J. DIFFERENTIAL GEOMETRY
5 (1971) 437-449

ALGEBRAS OF MATRICES UNDER DEFORMATION

W. STEPHEN PIPER

1. Introduction

The subject of this discussion is families of one-parameter deformations of
the associative algebras of n X n upper triangular real matrices; the purpose is
to expand the set of examples of algebraic deformations. Gerstenhaber [1] has
given an example of a commutative associative algebra which when deformed
is non-commutative. Also, a large class of associative algebras 4, namely the
class of semi-simple algebras, which includes the algebras of n X r matrices,
has the second Hochschild cohomology group HA, A) equal to zero. These
algebras are rigid, meaning that their only deformations are trivial, that is,
equivalent to those generated by vector space isomorphisms.

We consider the algebras 4, of n X n upper triangular real matrices having
equal diagonal elements. For any n > 2, dim Z¥A4,, A,) > dim B¥(A4,, A,),
and hence HA4,, A,) # 0 (§4). In the case of » = 3, we exhibit 2-cocycles
which can not be integrated to a deformation of 4,. Although H*(4,, 4,) # 0,
we prove that any infinitesimal deformation f of 4, and any partial integration
of f can be completed to a deformation of A4,. In other words, all obstructions
to the integration of f vanish, and as we shall see, with restriction only on the
choice of four of the eight coefficients for the cochains involved.

§ 2 presents a brief review of the definitions in algebraic deformation theory,
and §3 introduces the terminology which proves useful in analysis of the de-
formations of 4,. The existence of non-trivial infinitesimal deformations of 4,,
is proven in §4, together with the fact that H*A,, A,) # 0. The particular
cases of n = 2 and 3 are taken up in §§5 and 6. Formula 19 and § 7 provide
examples of deformations of A,,,n > 2.

2. Background

We recall from [1] and [2] the principal definitions of algebraic deformation
theory. Given an associative algebra 4 with multiplication denoted by juxtaposi-
tion, we define a (one-parameter) deformation of A to be a formal power series,

(1) F,(ct,ﬁ)=a,8+f1(a,,8)t+f2(a,‘3)tz—|—~--, C(,‘BGA,
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such that F, satisfies the law of associativity:

(2) F;(Ft(a,ﬁ)a‘)')—Fz(aaFt(ﬂ’T)):O’ C(,ﬂ,‘)’EA.

In terms of the Hochschild cohomology of 4 (with coboundary operator 8), (2)
is equivalent to

(e, B1) = 0,

(3)
5fr(a’ ,B’ ‘r) :p4§_— fp(fq(as ,B), T) - fp(aa fq(,Ba T)) 3
or more conveniently,
Bfl(aa ‘Ba T) =0,
of (a, 8, T) = p+§;=r-fp *fq(a’ B 7) H

p,9>0

where f, « f (e, 8,7) = f,(f,(a, B), 1) — Folee, f(Bs 7).

Given an associative algebra 4 and a cocycle f, € Z¥(A4, A), one seeks to

“integrate” f, to a deformation F,, i.e., to obtain 2-cochains f,, f,, - - - satistying
(3). Having obtained f,, f,, - - -, f,_, satisfying (3), we say that f, is integrated
up to the r'®-stage. The 3-cochain
©, = fox1,
prg=r
»,4>0

is called an r'®-obstruction to the integration of f,. The obstruction is said to
vanish if w, is cohomologous to zero. Gerstenhaber [1] has shown that
o, € Z%(A, A), and the question of integration is then to find f, e C*(4, A) such
that éf, = w,.

3. The algebras A4,

Denote by A4,, for fixed n > 2, the algebra over the real numbers of 7 X n
upper triangular matrices which have equal diagonal elements. Thus A4, is a
subalgebra of the algebra of all n X n upper triangular real matrices. While this
latter algebra, being semi-simple, has second Hochschild cohomology equal to
zero, the algebra A, does not. As a vector space over R, 4, has a canonical
basis

fer, - ohe} s dmAd,=v=1+ nn— 1)/2,

where ¢, is the n X n identity matrix, and the remaining e, each have a single
non-zero entry (specifically, 1) above the diagonal. It is convenient to express
the product of elements of A4, in terms of this basis. In particular,
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(4) GiGJ = ; e“kek .
Here and subsequently all summation is over the index set of the basis (i.e.,

from k = 1 to k = v).
One and 2-cochains g and f can be expressed as:

(5) gle;) = %: bier flews &) = X2 Auymtm -
One ascertains that B*(A4,, A,) consists of elements of the form:

(6) .f(etsej) = dgleg,e) = X (eikpbjk — €ibrp + ergpbin)e, -

Dk
The requirement that f € C*(A4,, A,) be a cocycle imposes restrictions on the
coefficients a,,, in the expression (5). In particular, 3f(e;, ¢;,¢,) = 0 for all i,
J, k implies that
Z (eipmajkp — €pxmBigp — €14p%pkm + ejkj)aipm)em =0 5
m,p
and, by the linear independence of the ¢,, that
(7) > (eipmajkp — €pimbizp — €iyplpim T €5upGipm) = 0,
D
foreachm=1,-..-,.
The general form of h(e,, ¢, &) € B (A, A,) is obtained from consideration of
flesse) = 2 Gyymen. Then
m

(8) oflesreper) = X (eimpajkm — €nipQigm — Ciymlmip T+ ejkmaimp)ep .
m,p

Let the deformation cochains f,,p = 0,1, 2, - - -, of the algebra 4, be given
by

fp(ei’ 51) = kZ Cclier »
where, of course,
foless ) = €€y = ; €ixcx >

and f, is a cocycle. With this notation and the assumption that

the r®-obstruction,
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(9) o= 3 fpxfe,

p+q=1
can be expressed as

607-(51', € Ek)

= Z [fp(cgjlel + o+ e &) — fp(eia Clper + -+ + C?kvev)]

pHq=7
,9>0
= 2 [(nglcfkl + oo elCh — gy — -0 — C?kvc?m)el
w0 gy
+ (nglcf’kz 4 oo+ Chee — ChpiChy — -0 — c‘}kvcﬁ)z)ez
4 ...
+ (cgjlcfkv + M + cgjvczplw - cgklcﬁv - = c?kvc?vv)ev]

4. Ecxistence of infinitesimal deformations

The result of this section is the statement that for each n > 2, H¥(A,,A,) # 0
and H*A,, A,) + 0. Thus, there are non-trivial infinitesimal deformations, and
so possibly deformations. Further, obstructions do not necessarily vanish. We
shall see in § 5 that for n = 2 all obstructions do vanish, and one has actual
deformations. For n = 3, a non-vanishing primary obstruction will be exhibited
§6).

Theorem 1. HXA,,A,) + 0, n > 2.

For the case where n, and hence v, are greater than 2, the proof is given
most easily by demonstrating that the following cocycle is not a coboundary:

(11) f(ei: Ej) = Bivajzen »

where ,,.is the Kronecker delta, and &, ¢,, ¢, denote the following matrices in
the canonical basis {e;, 5, + -+, &4, -+ +, &} Of A,

¢, has a 1 in the 1* row, 2°¢ column, otherwise zero,

e, has a 1 in the 1% row, n™ column, otherwise zero,

g, has a 1 in the (n — 1)* row, n'® column, otherwise zero.
First, one shows that (11) is a cocycle.

af(ei, ej? ek)

(12)
= Ei(ajvakzen) - E eiimamvakzen + E ejkmaivamzen - (511)5,72571)51: .

Since

Ei€n = Ené¢ = 5131571 » 1 <i<w,

€i1o = 03105 + 05,05, »
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and
€yuy = 050k + 050k »
(12) becomes
Of(ess g, 66) = (001050082 — €45u0ks + €412050 — 0100000)En = O .
In order that f(e;, ;) be equal to dgle;, ¢;) for some gle;) = 3, byuey, the
coefficient a,,,, of ¢, in (11) must be ’

(13) Qiym = ; (eik‘m.bjk — e;cbim + ekj‘m.bik) .

In particular, when i = v, j = 2, and m = n, (13) becomes
Qyym = Qyoy = ; (evkzbzk — evzkbkn + ekznbvk) .

But, e,y = €, = €4 = 0, for all k,1 < k < ». Therefore, since a,,, = 1
in (11), and not 0, f(s;,&,) = 8:,0,¢, is not an element of B4, 4,). Hence
the cohomology class of f in HXA4,, A,) is non-trivial. )

When n, and hence v, equal 2, f(¢;, €;,) = §;,8,.¢, is a non-cobounding cocycle.
The proof is analogous to the preceding general case: (13) becomes for i = j
= 2, m=1,

; (esibo — by + exubir) -

And,
€1 = €y = €, = 0, k=1,2.

Again, since a,, = 1 in (11), and not 0, f(e;, £;) = 8:,0,.¢, is not an element of
B¥A,, A4,).

Theorem 2. H(A,,A4,) +#0,n > 2.

Analogously to the preceding, one demonstrates that

(14) 8les €g5 &) = 57:7:511:51:1:51;
is a non-cobounding cocycle. Since e;;, = §;0;, + 8:,04, We have

53(5;‘, €75 €ks e‘m.) = ei(ajnaknamnen) - eijnaknamnen + 5inejkn5mn5n
— 0sn01nCrmnEn T 01n0jnOknnem = 0.

Suppose g = 3, Cijemen € B(A4,, A,). Then one shows that ¢,,,, = 0, where-

as for the g e Z*(A4,, A,,) defined by (14) above, ¢ pnn = 1.
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Consider f(e;,e5) = 3, dyymen such that 6f = g. The e,-coefficient of

6f(es, 5, €4) IS

%‘l Cimnbirm — €minGijm — €ijmOmin + €jxmBimn -
Setting i = j = &k = n, we get
Connn = ; CamnOnnm — Cmnnlnum — €numbmnn T Cnam@nmn = 0,
since e,,, = O for all m, and e,,,, = €pnpn = Omi-

5. Deformations of 4,

The algebra A4, of 2 x 2 upper triangular matrices with equal diagonal ele-
ments, considered as a vector space over R, has a canonical basis

f=lo Whe=1o ol

The coefficients e,;; in (4) can be conveniently expressed in matrix form:

10 0 1
15 b = (0 0> o G T (1 o) '

In order that

(16) f(es, Ej) =7, A;jmEm
m
be an element of B*(A4,, 4,), the coefficients a;;,, must satisfy

. b 0 b b
17 ai — ( 11 ) s a — ( 12 11> s
an 7710 o YT\, by

from which we conclude dim B*A,, 4,) = 3.
In order that f e C*(4,, A,) be a cocycle, its coefficients in (16) must satisfy

a 0 a a
as o= (5 O}, e ()
N0 ay, Qi Qg

from which we conclude dim Z*(A4,, A,) = 4. Therefore dim H*(4,, 4,) = 1.
A generator for H*(A4,, A,) is the cohomology class of the cocycle f(e;, ;) =
61261251.

Using the cocycle f,(e;, £;) = 8.,0,,6,, we proceed to deform A4,. The primary
obstruction w, = f, % f, is equal to zero for our choice of ;. Hence f, can be any
cocycle, the zero cocycle, for instance. Letting f,- = 0, r > 1, we have
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(19) Flo, f) = af + z flo, F = af + fila, Pt

a non-trivial deformation of the original multiplication of A,. If

SF ]

then

ab + abt ab, + ab >

Fya,B) =
(e ) ( 0 ab + abt

On the other hand, suppose for f,, one chooses a non-zero cocycle. The ques-
tion is then whether

af + file, Pt + foa, P

can be extended to a deformation of 4,, or if f, is an arbitrary cocycle, whether
there even exists an f, whose coboundary equals f, x f,. More generally, one
asks what restrictions, if any, are needed on the f, in order that the partial
integration of f,,

(20) af + file, Pt + fa, P + - -+ + fle, Pr7,

be extendible to a deformation of A,.
From (8) we conclude that B%*(A,, A,) consists of cochains whose coefficients
Cijum Satisfy

0 0 0 0
Cign = (_ j ) Cijp = ( ) ’

21 a;, 0 Ay — Qg Gy
_ f{ay O _ Gz — Gy — Gy
Cas
ijo1 — 0 s Cijon = 0 s
0 d1z1 — Qan

where the a,;, are the coefficients for some 2-cochain f(e;, ¢;) = Y, @yymem-
m

Dimension B% A4,, A,) is then four,
In an analogous manner, one can show that for a 3-cochain A(e;, &5, &) =
2. Cijpmém to be an element of Z3(A,, A,), its coefficients c;;;, must satisfy

{0 O 0 0
Ciju = 5 Cijre = 5
(22)‘ Cn O Canz  —Can
Co. == (1120 0 Cous = [Cnz2 —Cna
tje1 — 0 0 ’ 1§22 — .
Cii1 + Can Coozz
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Hence dim Z%(A4,,A,) = 5, and dim H*A4,,A,) = 1. A representative of a
non-zero class in H%(A,, A,) is h(e;, €5, €1) = 040120156,, and all other cocycles
are cohomologous to real multiples of this one.

Lemma 1. If f, e Z%(A4,, A,) and f,, - - -, f, € CX(A,, 4,) satisfy

(23) of, = Z fp*fqa §=2,-0,1,

thenforl1 < s<r,
i) @y = a3,
i) ajy =a,,
where f(ei,e5) = Y, G ymen-

For s = 1 the lemma is a consequence of f,’s being a cocycle. Computing
of, = f. + f,, one notes that a2, — 4&,, = 0 by examining the coefficient c,,,, in
(21). Similarly, the sum of coefficients

Conz + Cnze = Gl — a3, = 0.
The proof for general s now proceeds by induction. Let

5fs(5is €75 Ek) = Z fp *fq(et’ €ss Ek) = Z cgjk'm.em .
prq=s m
p,¢>0
Since this is a 3-coboundary, from (21) we have
A — A3 = Oy + Gy

q q q D ~q
2 [cBochy + cbuch, — chuchy — clnCh,

l

24) + chichy + ChaCh, — Bucly — hiCh,]

by the induction hypothesis, as p and g are less than 5. Also,

s —
Qfp; — 3y = Cypy + Cag
= 2 [chachy + chaChs — chochy — ChuChy
prg=s
(25) HES
+ ety + ChaChy — ChaCly — ChaClel

=0.

We conclude that all obstructions to the integration of infinitesimal deforma-
tions of A4, vanish by letting r = 1 in the following theorem.
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Theorem 3. Given f, ¢ Z¥(A,, A,) and §,, - - -, f, ¢ C¥(A,, A,) such that
(26) ofs = Z" fp*ftI’ s§=2,--,r,

one can extend

@7 af + fila, Pt + fla, B + -+« + fla, P17

to a deformation F (e, B) of A,.
Gerstenhaber [1] has proven that

(28) Wy = Z fp *fq

is a 3-cocycle. Comparing (21) and (22), we note that a 3-cocycle is a 3-co-
boundary if the coefficient c,,,, is zero. Calculating c,,,, for (28), we have

Come = 2 LehCh + cBaChy — BaCh— chnChil
prg=r+l
P,g>0
(29)
= 3 (ch— chck, =0,
pra=r+1
2,4>0
by the lemma.

Comparison of (21) and (22), together with (24), (25) and (29), yields the
corollary.

Corollary. With the hypotheses and notation of the theorem, the extend-
ibility of (27) to a deformation of A, is independent of the values of a,,;, a,
a,,, and ay,, 1 < s < r, and the corresponding coefficients for values of s > r
may be chosen arbitrarily in integrating (27).

6. Deformation of A,

The 4-dimensional algebra A,, considered as a vector space over R, has a
canonical basis

1 0 0 01 0 0 0 1 0 0O
g=|0 1 0], =10 0 0], ={0 0 0], ¢=|0 0 1};.
0 01 0 0O 0 0 O 0 0O

The coefficients e;;; in (4) can be expressed in matrix form:

SO O =

0 0

in = > €ije =

(=N eiNeN el

[N elNeNel

[eNelNoNel
o

O O O

(=i« i el

0
0
0

o

(30)
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0 010 0 0 01
0 0 01 e_oooo
1 00 0/ 4410 0 0 0
0 000 1 000

fless e) = 23 Quymen
m

be an element of Z*(A4;, A,), the coefficients a,,, must satisfy

alll

0

;5 = 0

\0

32

G2 e, 0
e = Gz Oon
3 ayp Gy
0 Qo3

0 0 O a,, a,, 0 0
0 0 ay __{Gm Ay — 0y Gy
00 0] %Tlo _aq, 0 0]
0 0 0 0 Ayn 0 0

4y Gz ay, O 0 ay,

Gy Qo P 0 0 0 oy — Qi3
=28y Gy |’ ha 0 0 0 —ay,

Ay Qyg3 A Gps  —Gyy Gy + Gy

The dimension of Z%A4,, 4,) is 15.
In order that f(e;, ¢;) given by (31) be an element of B%A4,, 4,), i.e., f = dg,
for some gle;) = 3 bye; e CY(A,;, Ay), its coefficients a;,,, must satisfy
7

b,
0
aij]. = 0
0
b,
(33) Q53 = 214
11
0
b,
0
Ayyy = 0
b

b
1

00 o0 b, b, 0 0
00 —b31 s = b11 2b21 b31 bu—baz
00 0] 20 by O 0 ’
00 0 0 b, O o /
0 bll blz

b24 b34 + b21 b44 - b33 + b22

bZI 2bé!l b41 + baz ’

0. b, by,

0 0 b,,

0 O b, —b,

0 0 b,,

b21 b31 2b41

Hence the dimensions of B*(A4,, A,) and H*(A,, A,) are, respectively, 12 and 3.

From (8) we conclude that B*(A,, A,) consists of cochains whose coefficients
Ciyum Satisfy the following constraints, where the a;;, are the coefficients for
some 2-cochain given by (31):



Cisn

Cije

Cigz

Ciju

Cijn

Cigo

Cigoa

Cijo

(34)

Cim

— @y
— 4y,

—day

|

alZZ
alZl

|
|
:
|
|

a124

alZl

a131

ayyy
ayy,

a3l
a41

ay,

0

a221

0
0
0
0

(=l eI}

A

a212

2

2

Az
ay13

3

[« el )
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0 0
0 —a,
0 0 ’
0 0
0 0 0
Qyyy Gy Ay — Ay
0 0 0 ’
0 0 0
0 0 0
Ay Gy Qg — A3y
E
A 4y ay
0 0 0
0 0 0
0 O —ay,
0 0 0 ’
ayn Gy Q
0
—
0 2
0
— a4y —d3 —ayy
0 Qg — Qggy Qyyy — Ay — Qgpp
?
— sy —dyy — 0y
— Gy — Gy —dyn
0 0
Ay Gy — Ogp
?
A3 ayn
0 0
0 0
0 — Qg
0 0 / ?
31 Gy,
0
— gy
0 b
0
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a; 0 0 0 \
_ | Gs G Gzy Oy — gy
Cm=lo 0 o0 o |’
0 0 0 0
Q33 — Gy —an — —an
Corer Qg — Gy Qyyy — Qpyy Ogyy — Qg Qyzy — Gy — Qg
1138 = .
Ay — Q3 Qo — Gy 0 Ay — Gy
—an —an — Qg3 — Oy
a,; O 0 0
0 O 0 — Qg
=10 o0 o0 0 |’
Gy Qo Gy Ay
Gy Gy 0 0
P 0 Gy 0 —ay
i =
MTH0 ay 0 0
0 a, 0 0
L O3z 0 0
Cor — Ay Gy + G Gy Gy — Qo
i =
J4 0 Ay, 0 0 ’
0 Qs 0 0
Qi3 — Qipz Q33 — Qi — Q3 Ay
Corn — Qg — Ggp Gpyy — Gpp + Opzz Gggy — gy Aygy — Gpp — Gagg
ij43 — >
Qg — A3y Gy — Qgpp + Qg3 Gyy — Qg Ay — Gy
— Ay, Q33 — Qypp — Ay, — Ay
Gy — Qi a3y — Gin — i — a1y
Corr — —Aaum Gy — Qo — by — oy — Gy
1is =
—day, Qg3 — Q3n — Q3 —Qa
Ay — Qg Qugy — Gy + Gon — Gy + G3yy 0

In the algebra A,, we found that all obstructions to integration of infini-
tesimal and partial deformations vanished (Theorem 3). For A4, we have the
contrary result.

Lemma 2. The infinitesimal deformation

(35) f(si, Ej) = (51‘3 + 51'4)5,1253 + 51‘45_1‘254 = Z AiyméEm >
where

Ayym = (Bss + 0:)0;0ms + 61405:0ms
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is not integrable.
Comparing (32) and (33) we note that f(e;, ¢;) in (35) is a cocycle but not a
coboundary. The primary obstruction

(36) wyes, €5, 8x) = [(fless €5), ex) — flegs flejy €6)) = 23 Cigamem

has as a coefficient :
37N Cops = (2353 — A)A = 2 .

From (34) any 3-coboundary }; ¢;;xmen € B(4;, A,) must have c,,,, = 0. There-

fore (36) is an actual obstruction, and the 2-cocycle (35) is not integrable.
More generally, in order that the primary obstruction to the integration of
the cocycle f(e;, €;) = Y ayymen be cohomologous to zero (i.e. vanish), the fol-
m

lowing relations must be satisfied by the a,;,,:

(38) (203, — ) = 0, Aoy + Gpp — 20,,) = 0.

7. Existence of deformation of 4,

The existence of deformations of the algebras 4,,n > 2, is demonstrated by
consideration of the non-cobounding 2-cocycle,

(39) fl(ei’ Ej) = Z aéjme'm. = 52‘1;5_7'2571 >

(cf. (11)). The primary obstruction of (39) is
fl * fl(eia €5 Ek) = fl(aivajzena ek) - fl(ei’ 5jv5k25n)
= (5iv5j25n1)5k2 - 5jv5k25i1)5n2)5n =0 »

since n # v, n 3 2. Therefore, in particular, choosing f, = 0,s > 2, we have
the deformation of A4,

File,se5) = egy + 80080t n>2.

The similar deformation of 4, was given in § 5.
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